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ABSTRACT
Adjuvants are included in vaccine formulations to enhance the immunogenicity and efficacy of vaccines.
MF59® is an oil-in-water emulsion adjuvant and licensed for use in pandemic and seasonal influenza
vaccines in many countries. MF59 is safe and well tolerated in humans. MF59-adjuvanted vaccination
spares vaccine dose and enhances hemagglutination inhibiting antibodies against homologous and
heterologous influenza virus strains. The mechanisms of MF59 involve rapid induction of chemokines,
inflammatory cytokines, recruiting multiple immune cells, uric acid and benign apoptosis of certain
innate immune cells. The adjuvant effects of MF59 on generating vaccine-specific isotype-switched IgG
antibodies, effector CD8 T cells, and protective immunity were retained even in a CD4-deficient
condition by inducing effective immune-competent microenvironment with various innate and antigen
presenting cells in a mouse model. CD4-independent adjuvant effects of MF59 might contribute to
improving the vaccine efficacy in children, the elderly, and immunocompromised patients as well as in
healthy adults. Further studies will be needed to broaden the use of MF59 in various vaccine antigens
and populations as well as lead to better understanding of the action mechanisms of MF59 adjuvant.
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Introduction

MF59® was approved to be included in human influenza
vaccines in over 30 countries for use in individuals including
children and the elderly.1–3 MF59 is an oil-in-water emulsion
containing squalene (4.3%) in citric acid buffer with stabiliz-
ing nonionic surfactants Tween 80 (0.5%) and Span 85 (0.5%).
Squalene is naturally synthesized in the pathway of human
steroid hormones, and present in skin, adipose tissue and
muscles. The natural squalene is obtained from shark liver
and prepared for vaccine adjuvants after purification. Also,
Tween 80 and Span 85 are plant-derived pharmaceutical sur-
factants. All components of MF59 are biodegradable natural
derivatives, safe, and well tolerated. The mean size of the oil
droplets is approximately 160 nm. MF59 was originally devel-
oped as an antigen delivery buffer and tested first with an
antigen and immune potentiator, but surprisingly potent
adjuvant effects were discovered in MF59 formulation itself.2

A MF59-adjuvanted seasonal influenza vaccine (Fluad®) was
first licensed in 1997 for the elderly, and since then have been
approved to be included in human vaccines in over 30 countries
including the US.3 In addition to seasonal influenza vaccine,
MF59-adjuvanted H1N1 pandemic influenza vaccine (Focetria®
and Celtura®) has been distributed to populations including preg-
nant women and young children with approximately 100 million
doses.2 MF59 adjuvant effects on influenza vaccination include
increased immunogenicity of vaccines such as hemagglutination
inhibiting (HAI) antibodies and memory T and B cells against
antigenically drifted influenza viruses, resulting in more effective
pandemic and seasonal influenza vaccines.4,5

A common feature of many adjuvants included in vaccina-
tion is the rapid induction of innate immune responses at the
site of injection and draining lymph nodes, which is needed
for effective antigen presentation to CD4 T helper cells pro-
viding immunological help to develop B cells and CD8 T cell
adaptive immunity.1,3 Vaccine adjuvants are considered to
play a key role in educating CD4 T helper cells via generating
inflammatory innate immune responses and activating anti-
gen presenting cells (APCs). Here, we review the MF59 adju-
vant effects in a CD4-dependent and CD4-independent
manner and their implications for adjuvanted vaccination.

CD4-dependent and CD4-independent adjuvant
effects of MF59

Both antigen and MF59 were shown not to be detected within
a few hours after injection in the experiments using radio-
labeled or fluorescence-labeled antigen and MF59.6 MF59
recruited immune cells in C-C motif chemokine receptor 2 7

and intercellular adhesion molecule-18 dependent manner,
and chemokines such as C-C motif chemokine ligands
(CCL) 2, CCL3, CCL4 and interleukin (IL)-8 were secreted
by MF59-treated cells to recruit more immune cells at the site
of injection.9 Antigens and MF59 are taken up by neutrophils
and monocytes, and later followed by dendritic cells (DCs)
and B cells, and moved to draining lymph nodes.1,10 Recently,
MF59 was shown to promote differentiation of monocyte-
derived DCs (Mo-DCs) within draining lymph nodes and
these Mo-DCs were the major APCs to enhance antigen-
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specific CD4 T cell responses.11 In addition, MF59 enhanced
CD4 T follicular helper cell activation and following germinal
center reaction to increase B cell responses in mice.12 CD4 T
cells are required for inducing B cell responses to generate
isotype-switched IgG antibodies to subunit split virus or pro-
tein antigen vaccination.13 A conventional view is that vaccine
adjuvants activate the innate immune system including APCs,
mediate the induction of appropriate T helper cell responses
such as T helper (Th) 1, Th2 and Th17, which determines the
quality and quantity of antigen-specific B cell responses and
the outcomes of adaptive immunity.14–16

In our recent study, inactivated split influenza vaccine
failed to induce IgG antibody responses in CD4 deficient
mice, suggesting that split influenza vaccine is T-dependent
antigen and requires CD4 T helper cells to induce antigen
specific IgG antibody responses.13 As expected, the adjuvant
effects of alum require the presence of CD4 T helper cells in
the context of T-dependent split influenza vaccine. In contrast
to the CD4 T cell-dependent adjuvant effects of alum, inclu-
sion of MF59 in split influenza vaccination of CD4 deficient
mice or CD4-depleted wild type mice mediated the induction
of IgG isotype-switched antibodies at the levels comparable to
those in wild type mice.13 In addition, the MF59 adjuvant
effects in CD4 deficient mice include the induction of HAI
antibodies, long-lived antibody secreting plasma cells in bone
marrow, protective CD8 T cell responses, and complete pro-
tection against lethal influenza infection.13 Thus, MF59 can
exhibit the adjuvant effects on promoting IgG isotype-
switching and enhancing adaptive immunity after vaccination
in a CD4-deficient condition, suggesting a CD4-independent
pathway connecting innate immune responses and adaptive
immune systems in addition to the conventional CD4 T
helper cell-dependent mechanisms.13 In contrast to the inde-
pendence of CD4 T cell help, the expression of major histo-
compatibility complex class II molecule (MHCII) was
required for the adjuvanticity of MF59. Mechanisms of CD4-
independent adjuvant effects of MF59 remain to be further
determined.

Peritoneal injection of MF59 was effective in acute induc-
tion of inflammatory cytokines (IL-6, tumor necrosis factor-
alpha), chemokine (CCL5), eosinophils, DC subsets, and nat-
ural killer (NK) T cells in CD4 deficient mice, at higher levels
than those in wild type mice.13 Other cytokine (IL-5) and
chemokines (Monocyte chemoattractant protein 1 [MCP-1]),
monocytes, neutrophils, and NK cells were induced at compar-
able levels in CD4 deficient and wild type mice after MF59
injection, which were higher levels than alum adjuvant.13

Signaling from cell death induces local inflammatory micro-
environment triggering the innate immune activation and pro-
motes the adaptive immune responses.17 MF59 induces non-
harmful apoptosis of DCs in draining lymph nodes after intra-
muscular injection.7 Peritoneal injection of MF59 in mice
induced depletion of macrophages and DCs and increased
uric acid which is a danger signal released after cell death at
the site of injection.13 Interestingly, MF59 but not alum adju-
vant could recruit various innate immune cells (monocytes,
neutrophils, eosinophils) and APCs (CD11bhigh/low DCs) at
the site of injection in CD4-deficient mice.13 In line with
in vivo effects, in vitro cultures of bone marrow derived DCs,

macrophages and DC2.4 DC cell lines with MF59 treatment
induced both apoptosis and necrotic cell death.13 MF59 does
not activate any of the Toll-like receptors (TLR) in vitro, but its
adjuvanticity requires myeloid differentiation primary
response 88 (MyD88), suggesting MF59 adjuvant effects by a
TLR-independent signaling pathway.18 The in vivo adjuvant
effects of MF59 were shown to require the roles of the apopto-
sis-associated speck-like protein containing a caspase recruit-
ment domain, IL-4 and Stat-6 signaling but independently of
type-1 interferon and inflammasome signaling pathways.19–21

MF59 in comparison with other adjuvants

Compared to alum,MF59-adjuvanted influenza vaccine induced
higher levels of antigen-specific antibody production, higher
HAI titers, and better protection in a mouse model.13,22,23 In
addition, MF59 with different vaccine antigens (tetanus toxoid,
hepatitis B, Group B and C Meningococcal bacteria) has also
shown better adjuvant efficacy than alum adjuvant in mice.24

MF59 was more potent in rapid induction of inflammatory
cytokines (IL-5), chemokine (MCP-1), uric acid, and in recruit-
ing innate immune cells (monocytes, neutrophils, NK cells,
lymphocytes) compared to alum.1,10,13 In clinical studies, MF59-
adjuvanted vaccination increased HAI titers by 2 to 5 folds when
compared to those by alum-adjuvanted vaccination with A/
H5N1 influenza subunit vaccine.25

Adjuvant system 04 (AS04) was developed and licensed by
GlaxoSmithKline Biologicals and has been used in hepatitis B
virus vaccine (Fendrix) and human papillomavirus vaccine
(Cervarix). It is a combination of alum and monophosphoryl
lipid A (MPL), a TLR4 agonist. The immune stimulation effects
of AS04 were mainly due to MPL, and it induces increased APC
activation and local nuclear factor (NF)-kappaB activity and
cytokine production. And alum in AS04 appears to prolong
the cytokine responses of MPL at the site of injection.26 Both
MF59 and AS04 adjuvanted influenza vaccinations were effec-
tive in inducing IgG isotype-switched antibodies and conferring
protective immunity in a CD4 deficient mouse model.13,27

MF59 was more potent than AS04 in exhibiting CD4-
independent adjuvant effects. AS04 showed a moderate level
of CD4-dependency in inducing isotype-switched IgG antibo-
dies, but AS04-adjuvanted T-dependent split influenza vaccine
provided sufficient protection in CD4-deficient mice. Both
MF59 and AS04 appeared to generate local inflammatory
microenvironment and recruit DCs at the site of injection. In
addition to APCs, CD8 T cells and double negative T cells were
increased in MF59 or AS04-treated CD4 deficient mice.
MHCII-expressing cellular components, double negative T
cells, and soluble cytokines and chemokines by MF59 or AS04
adjuvants are likely to be the major contributing factors in
providing alternative help to B cells for inducing IgG antibody
responses in a CD4-deficient condition.

Clinical applications of MF59 vaccine adjuvant

In a healthy adult population, MF59-adjuvanted low-dose
influenza A/H5N1 vaccination induced higher HAI titers
than those of high doses of unadjuvanted vaccination.28

High titers of cross-reactive antibodies were rapidly induced
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and remained detectable among MF59-adjuvatned pre-
pandemic H5 vaccine primed subjects.4 Also, MF59-
adjuvanted single low-dose (3.75 µg) influenza A/H1N1 vac-
cine induced optimal immune responses in young to middle-
aged (18−64 years) and older (≥ 65 years) adult populations,
and higher vaccine doses with MF59 induced highest antibody
titers.29 MF59 adjuvanted influenza A/H1N1 vaccine and
seasonal trivalent vaccines display benefits of antigen dose
sparing, higher antibody responses, longer antibody mainte-
nance, and magnitude of innate and adaptive immune
responses in young children and adolescents.30–32 In particu-
lar, MF59-adjuvanted influenza vaccine provided immune
responses to heterologous strain, greater protection, and clin-
ical benefits in vaccine-naïve children aged 6 months through
5 years.21,33 In retrospective investigations of pregnant women
vaccinated with Focetria (MF59-adjuvanted pandemic A/
H1N1), there was no statistically significant association of
maternal, fetal and neonatal outcomes between adjuvanted
and unadjuvanted vaccine-administered cohorts, suggesting
that MF59 adjuvanted A/H1N1 pandemic influenza vaccina-
tion was safe during pregnancy.34,35

In addition to different aged populations, the MF59-
adjuvanted influenza vaccine showed better immunogenicity
and sero-protection levels in human immunodeficiency virus
(HIV)-infected patients36,37 and chronic kidney disease
patients undergoing hemodialysis38, suggesting significant
MF59 adjuvant effects in immunocompromised patients.

Until now, MF59 is licensed in influenza vaccines. There
have been clinical trials to apply MF59 adjuvant to other
vaccines covering bacteria and viruses. Human cytomegalo-
virus (HCMV) glycoprotein B subunit vaccine plus MF59
adjuvant conferred approximately 50% efficacy in preventing
HCMV acquisition in a phase 2 trial39 and its efficacy was
mediated by non-neutralizing antibody functions.40 MF59-
adjuvanted Staphylococcus aureus vaccines induced protective
humoral and cellular immune responses, CD4 T effector cell
activity in mice.41 MF59-adjuvanted recombinant vaccine
containing Aventis Pasteur’s canarypox vector–HIV gp120
increased immunogenicity to vaccine antigen in rhesus maca-
ques although it could not delay the onset of simian immu-
nodeficiency virus infection.42

MF59-adjuvanted vaccines prefer to induce Th2 immune-
biased responses. The addition of TLR9 agonist CpG or TLR4
agonist E6020 to MF59-adjuvatned vaccines induced a more
potent Th1 cellular immune response, which is represented by
higher IgG2a titers and the induction of enhanced interferon-
gamma response as well as similar or higher antibody titers.43–45

HIV vaccines with MF59 plus Carbopol-971P (synthetic poly-
anionic carbomers) were shown to enhance binding and neu-
tralizing antibody titers with higher avidity.46,47

Conclusion

MF59 is a safe and effective adjuvant licensed to be included
in influenza vaccines. It is significant that MF59 can overcome
a defect in CD4 T cell help in exhibiting adjuvant effects on
enhancing adaptive immunity to vaccination, suggesting a
new paradigm of CD4-independent adjuvant action mechan-
isms of MF59. This might explain adjuvant efficacy of MF59

in influenza vaccines in broader populations from young
children to the elderly and in immunocompromised patients.
It is expected that further studies will broaden the use of
MF59 in various vaccine antigens and platforms as well as
lead to better understanding of the mechanisms of MF59
adjuvant effects.
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